/* PSPP - a program for statistical analysis. Copyright (C) 1997-9, 2000 Free Software Foundation, Inc. This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /* TODO: * Remember that histograms, bar charts need mean, stddev. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "freq.h" #include "minmax.h" #include "gettext.h" #define _(msgid) gettext (msgid) #define N_(msgid) msgid /* (headers) */ /* (specification) FREQUENCIES (frq_): *+variables=custom; +format=cond:condense/onepage(*n:onepage_limit,"%s>=0")/!standard, table:limit(n:limit,"%s>0")/notable/!table, labels:!labels/nolabels, sort:!avalue/dvalue/afreq/dfreq, spaces:!single/double, paging:newpage/!oldpage; missing=miss:include/!exclude; barchart(ba_)=:minimum(d:min), :maximum(d:max), scale:freq(*n:freq,"%s>0")/percent(*n:pcnt,"%s>0"); piechart(pie_)=:minimum(d:min), :maximum(d:max), missing:missing/!nomissing; histogram(hi_)=:minimum(d:min), :maximum(d:max), scale:freq(*n:freq,"%s>0")/percent(*n:pcnt,"%s>0"), norm:!nonormal/normal, incr:increment(d:inc,"%s>0"); hbar(hb_)=:minimum(d:min), :maximum(d:max), scale:freq(*n:freq,"%s>0")/percent(*n:pcnt,"%s>0"), norm:!nonormal/normal, incr:increment(d:inc,"%s>0"); +grouped=custom; +ntiles=integer; +percentiles = double list; +statistics[st_]=1|mean,2|semean,3|median,4|mode,5|stddev,6|variance, 7|kurtosis,8|skewness,9|range,10|minimum,11|maximum,12|sum, 13|default,14|seskewness,15|sekurtosis,all,none. */ /* (declarations) */ /* (functions) */ /* Statistics. */ enum { frq_mean = 0, frq_semean, frq_median, frq_mode, frq_stddev, frq_variance, frq_kurt, frq_sekurt, frq_skew, frq_seskew, frq_range, frq_min, frq_max, frq_sum, frq_n_stats }; /* Description of a statistic. */ struct frq_info { int st_indx; /* Index into a_statistics[]. */ const char *s10; /* Identifying string. */ }; /* Table of statistics, indexed by dsc_*. */ static const struct frq_info st_name[frq_n_stats + 1] = { {FRQ_ST_MEAN, N_("Mean")}, {FRQ_ST_SEMEAN, N_("S.E. Mean")}, {FRQ_ST_MEDIAN, N_("Median")}, {FRQ_ST_MODE, N_("Mode")}, {FRQ_ST_STDDEV, N_("Std Dev")}, {FRQ_ST_VARIANCE, N_("Variance")}, {FRQ_ST_KURTOSIS, N_("Kurtosis")}, {FRQ_ST_SEKURTOSIS, N_("S.E. Kurt")}, {FRQ_ST_SKEWNESS, N_("Skewness")}, {FRQ_ST_SESKEWNESS, N_("S.E. Skew")}, {FRQ_ST_RANGE, N_("Range")}, {FRQ_ST_MINIMUM, N_("Minimum")}, {FRQ_ST_MAXIMUM, N_("Maximum")}, {FRQ_ST_SUM, N_("Sum")}, {-1, 0}, }; /* Percentiles to calculate. */ struct percentile { double p; /* the %ile to be calculated */ double value; /* the %ile's value */ double x1; /* The datum value <= the percentile */ double x2; /* The datum value >= the percentile */ int flag; int flag2; /* Set to 1 if this percentile value has been found */ }; static void add_percentile (double x) ; static struct percentile *percentiles; static int n_percentiles; static int implicit_50th ; /* Groups of statistics. */ #define BI BIT_INDEX #define frq_default \ (BI (frq_mean) | BI (frq_stddev) | BI (frq_min) | BI (frq_max)) #define frq_all \ (BI (frq_sum) | BI(frq_min) | BI(frq_max) \ | BI(frq_mean) | BI(frq_semean) | BI(frq_stddev) \ | BI(frq_variance) | BI(frq_kurt) | BI(frq_sekurt) \ | BI(frq_skew) | BI(frq_seskew) | BI(frq_range) \ | BI(frq_range) | BI(frq_mode) | BI(frq_median)) /* Statistics; number of statistics. */ static unsigned long stats; static int n_stats; /* Types of graphs. */ enum { GFT_NONE, /* Don't draw graphs. */ GFT_BAR, /* Draw bar charts. */ GFT_HIST, /* Draw histograms. */ GFT_PIE, /* Draw piechart */ GFT_HBAR /* Draw bar charts or histograms at our discretion. */ }; /* Parsed command. */ static struct cmd_frequencies cmd; /* Summary of the barchart, histogram, and hbar subcommands. */ /* FIXME: These should not be mututally exclusive */ static int chart; /* NONE/BAR/HIST/HBAR/PIE. */ static double min, max; /* Minimum, maximum on y axis. */ static int format; /* FREQ/PERCENT: Scaling of y axis. */ static double scale, incr; /* FIXME */ static int normal; /* FIXME */ /* Variables for which to calculate statistics. */ static size_t n_variables; static const struct variable **v_variables; /* Arenas used to store semi-permanent storage. */ static struct pool *int_pool; /* Integer mode. */ static struct pool *gen_pool; /* General mode. */ /* Frequency tables. */ /* Types of frequency tables. */ enum { FRQM_GENERAL, FRQM_INTEGER }; /* Entire frequency table. */ struct freq_tab { int mode; /* FRQM_GENERAL or FRQM_INTEGER. */ /* General mode. */ struct hsh_table *data; /* Undifferentiated data. */ /* Integer mode. */ double *vector; /* Frequencies proper. */ int min, max; /* The boundaries of the table. */ double out_of_range; /* Sum of weights of out-of-range values. */ double sysmis; /* Sum of weights of SYSMIS values. */ /* All modes. */ struct freq *valid; /* Valid freqs. */ int n_valid; /* Number of total freqs. */ struct freq *missing; /* Missing freqs. */ int n_missing; /* Number of missing freqs. */ /* Statistics. */ double total_cases; /* Sum of weights of all cases. */ double valid_cases; /* Sum of weights of valid cases. */ }; /* Per-variable frequency data. */ struct var_freqs { /* Freqency table. */ struct freq_tab tab; /* Frequencies table to use. */ /* Percentiles. */ int n_groups; /* Number of groups. */ double *groups; /* Groups. */ /* Statistics. */ double stat[frq_n_stats]; /* Width and format for analysis and display. This is normally the same as "width" and "print" in struct variable, but in SPSS-compatible mode only the first MAX_SHORT_STRING bytes of long string variables are included. */ int width; struct fmt_spec print; }; static inline struct var_freqs * get_var_freqs (const struct variable *v) { return var_get_aux (v); } static void determine_charts (void); static void calc_stats (const struct variable *v, double d[frq_n_stats]); static void precalc (struct casereader *, struct dataset *); static void calc (const struct ccase *, const struct dataset *); static void postcalc (void); static void postprocess_freq_tab (const struct variable *); static void dump_full (const struct variable *); static void dump_condensed (const struct variable *); static void dump_statistics (const struct variable *, int show_varname); static void cleanup_freq_tab (const struct variable *); static hsh_compare_func compare_value_numeric_a, compare_value_alpha_a; static hsh_compare_func compare_value_numeric_d, compare_value_alpha_d; static hsh_compare_func compare_freq_numeric_a, compare_freq_alpha_a; static hsh_compare_func compare_freq_numeric_d, compare_freq_alpha_d; static void do_piechart(const struct variable *var, const struct freq_tab *frq_tab); gsl_histogram * freq_tab_to_hist(const struct freq_tab *ft, const struct variable *var); /* Parser and outline. */ static int internal_cmd_frequencies (struct lexer *lexer, struct dataset *ds); int cmd_frequencies (struct lexer *lexer, struct dataset *ds) { int result; int_pool = pool_create (); result = internal_cmd_frequencies (lexer, ds); pool_destroy (int_pool); int_pool=0; pool_destroy (gen_pool); gen_pool=0; free (v_variables); v_variables=0; return result; } static int internal_cmd_frequencies (struct lexer *lexer, struct dataset *ds) { struct casegrouper *grouper; struct casereader *input, *group; bool ok; int i; n_percentiles = 0; percentiles = NULL; n_variables = 0; v_variables = NULL; if (!parse_frequencies (lexer, ds, &cmd, NULL)) return CMD_FAILURE; if (cmd.onepage_limit == NOT_LONG) cmd.onepage_limit = 50; /* Figure out statistics to calculate. */ stats = 0; if (cmd.a_statistics[FRQ_ST_DEFAULT] || !cmd.sbc_statistics) stats |= frq_default; if (cmd.a_statistics[FRQ_ST_ALL]) stats |= frq_all; if (cmd.sort != FRQ_AVALUE && cmd.sort != FRQ_DVALUE) stats &= ~frq_median; for (i = 0; i < frq_n_stats; i++) if (cmd.a_statistics[st_name[i].st_indx]) stats |= BIT_INDEX (i); if (stats & frq_kurt) stats |= frq_sekurt; if (stats & frq_skew) stats |= frq_seskew; /* Calculate n_stats. */ n_stats = 0; for (i = 0; i < frq_n_stats; i++) if ((stats & BIT_INDEX (i))) n_stats++; /* Charting. */ determine_charts (); if (chart != GFT_NONE || cmd.sbc_ntiles) cmd.sort = FRQ_AVALUE; /* Work out what percentiles need to be calculated */ if ( cmd.sbc_percentiles ) { for ( i = 0 ; i < MAXLISTS ; ++i ) { int pl; subc_list_double *ptl_list = &cmd.dl_percentiles[i]; for ( pl = 0 ; pl < subc_list_double_count(ptl_list); ++pl) add_percentile (subc_list_double_at(ptl_list, pl) / 100.0 ); } } if ( cmd.sbc_ntiles ) { for ( i = 0 ; i < cmd.sbc_ntiles ; ++i ) { int j; for (j = 0; j <= cmd.n_ntiles[i]; ++j ) add_percentile (j / (double) cmd.n_ntiles[i]); } } /* Do it! */ input = casereader_create_filter_weight (proc_open (ds), dataset_dict (ds), NULL, NULL); grouper = casegrouper_create_splits (input, dataset_dict (ds)); for (; casegrouper_get_next_group (grouper, &group); casereader_destroy (group)) { struct ccase c; precalc (group, ds); for (; casereader_read (group, &c); case_destroy (&c)) calc (&c, ds); postcalc (); } ok = casegrouper_destroy (grouper); ok = proc_commit (ds) && ok; free_frequencies(&cmd); return ok ? CMD_SUCCESS : CMD_CASCADING_FAILURE; } /* Figure out which charts the user requested. */ static void determine_charts (void) { int count = (!!cmd.sbc_histogram) + (!!cmd.sbc_barchart) + (!!cmd.sbc_hbar) + (!!cmd.sbc_piechart); if (!count) { chart = GFT_NONE; return; } else if (count > 1) { chart = GFT_HBAR; msg (SW, _("At most one of BARCHART, HISTOGRAM, or HBAR should be " "given. HBAR will be assumed. Argument values will be " "given precedence increasing along the order given.")); } else if (cmd.sbc_histogram) chart = GFT_HIST; else if (cmd.sbc_barchart) chart = GFT_BAR; else if (cmd.sbc_piechart) chart = GFT_PIE; else chart = GFT_HBAR; min = max = SYSMIS; format = FRQ_FREQ; scale = SYSMIS; incr = SYSMIS; normal = 0; if (cmd.sbc_barchart) { if (cmd.ba_min != SYSMIS) min = cmd.ba_min; if (cmd.ba_max != SYSMIS) max = cmd.ba_max; if (cmd.ba_scale == FRQ_FREQ) { format = FRQ_FREQ; scale = cmd.ba_freq; } else if (cmd.ba_scale == FRQ_PERCENT) { format = FRQ_PERCENT; scale = cmd.ba_pcnt; } } if (cmd.sbc_histogram) { if (cmd.hi_min != SYSMIS) min = cmd.hi_min; if (cmd.hi_max != SYSMIS) max = cmd.hi_max; if (cmd.hi_scale == FRQ_FREQ) { format = FRQ_FREQ; scale = cmd.hi_freq; } else if (cmd.hi_scale == FRQ_PERCENT) { format = FRQ_PERCENT; scale = cmd.ba_pcnt; } if (cmd.hi_norm != FRQ_NONORMAL ) normal = 1; if (cmd.hi_incr == FRQ_INCREMENT) incr = cmd.hi_inc; } if (cmd.sbc_hbar) { if (cmd.hb_min != SYSMIS) min = cmd.hb_min; if (cmd.hb_max != SYSMIS) max = cmd.hb_max; if (cmd.hb_scale == FRQ_FREQ) { format = FRQ_FREQ; scale = cmd.hb_freq; } else if (cmd.hb_scale == FRQ_PERCENT) { format = FRQ_PERCENT; scale = cmd.ba_pcnt; } if (cmd.hb_norm) normal = 1; if (cmd.hb_incr == FRQ_INCREMENT) incr = cmd.hb_inc; } if (min != SYSMIS && max != SYSMIS && min >= max) { msg (SE, _("MAX must be greater than or equal to MIN, if both are " "specified. However, MIN was specified as %g and MAX as %g. " "MIN and MAX will be ignored."), min, max); min = max = SYSMIS; } } /* Add data from case C to the frequency table. */ static void calc (const struct ccase *c, const struct dataset *ds) { double weight = dict_get_case_weight (dataset_dict (ds), c, NULL); size_t i; for (i = 0; i < n_variables; i++) { const struct variable *v = v_variables[i]; const union value *val = case_data (c, v); struct var_freqs *vf = get_var_freqs (v); struct freq_tab *ft = &vf->tab; switch (ft->mode) { case FRQM_GENERAL: { /* General mode. */ struct freq target; struct freq **fpp; target.value = (union value *) val; fpp = (struct freq **) hsh_probe (ft->data, &target); if (*fpp != NULL) (*fpp)->count += weight; else { struct freq *fp = pool_alloc (gen_pool, sizeof *fp); fp->count = weight; fp->value = pool_clone (gen_pool, val, MAX (MAX_SHORT_STRING, vf->width)); *fpp = fp; } } break; case FRQM_INTEGER: /* Integer mode. */ if (val->f == SYSMIS) ft->sysmis += weight; else if (val->f > INT_MIN+1 && val->f < INT_MAX-1) { int i = val->f; if (i >= ft->min && i <= ft->max) ft->vector[i - ft->min] += weight; } else ft->out_of_range += weight; break; default: NOT_REACHED (); } } } /* Prepares each variable that is the target of FREQUENCIES by setting up its hash table. */ static void precalc (struct casereader *input, struct dataset *ds) { struct ccase c; size_t i; if (!casereader_peek (input, 0, &c)) return; output_split_file_values (ds, &c); case_destroy (&c); pool_destroy (gen_pool); gen_pool = pool_create (); for (i = 0; i < n_variables; i++) { const struct variable *v = v_variables[i]; struct freq_tab *ft = &get_var_freqs (v)->tab; if (ft->mode == FRQM_GENERAL) { ft->data = hsh_create (16, compare_freq, hash_freq, NULL, v); } else { int j; for (j = (ft->max - ft->min); j >= 0; j--) ft->vector[j] = 0.0; ft->out_of_range = 0.0; ft->sysmis = 0.0; } } } /* Finishes up with the variables after frequencies have been calculated. Displays statistics, percentiles, ... */ static void postcalc (void) { size_t i; for (i = 0; i < n_variables; i++) { const struct variable *v = v_variables[i]; struct var_freqs *vf = get_var_freqs (v); struct freq_tab *ft = &vf->tab; int n_categories; int dumped_freq_tab = 1; postprocess_freq_tab (v); /* Frequencies tables. */ n_categories = ft->n_valid + ft->n_missing; if (cmd.table == FRQ_TABLE || (cmd.table == FRQ_LIMIT && n_categories <= cmd.limit)) switch (cmd.cond) { case FRQ_CONDENSE: dump_condensed (v); break; case FRQ_STANDARD: dump_full (v); break; case FRQ_ONEPAGE: if (n_categories > cmd.onepage_limit) dump_condensed (v); else dump_full (v); break; default: NOT_REACHED (); } else dumped_freq_tab = 0; /* Statistics. */ if (n_stats) dump_statistics (v, !dumped_freq_tab); if ( chart == GFT_HIST) { double d[frq_n_stats]; struct normal_curve norm; gsl_histogram *hist ; norm.N = vf->tab.valid_cases; calc_stats (v, d); norm.mean = d[frq_mean]; norm.stddev = d[frq_stddev]; hist = freq_tab_to_hist(ft,v); histogram_plot(hist, var_to_string(v), &norm, normal); gsl_histogram_free(hist); } if ( chart == GFT_PIE) { do_piechart(v_variables[i], ft); } cleanup_freq_tab (v); } } /* Returns the comparison function that should be used for sorting a frequency table by FRQ_SORT using VAR_TYPE variables. */ static hsh_compare_func * get_freq_comparator (int frq_sort, enum var_type var_type) { bool is_numeric = var_type == VAR_NUMERIC; switch (frq_sort) { case FRQ_AVALUE: return is_numeric ? compare_value_numeric_a : compare_value_alpha_a; case FRQ_DVALUE: return is_numeric ? compare_value_numeric_d : compare_value_alpha_d; case FRQ_AFREQ: return is_numeric ? compare_freq_numeric_a : compare_freq_alpha_a; case FRQ_DFREQ: return is_numeric ? compare_freq_numeric_d : compare_freq_alpha_d; default: NOT_REACHED (); } } /* Returns true iff the value in struct freq F is non-missing for variable V. */ static bool not_missing (const void *f_, const void *v_) { const struct freq *f = f_; const struct variable *v = v_; return !var_is_value_missing (v, f->value, MV_ANY); } /* Summarizes the frequency table data for variable V. */ static void postprocess_freq_tab (const struct variable *v) { hsh_compare_func *compare; struct freq_tab *ft; size_t count; void *const *data; struct freq *freqs, *f; size_t i; ft = &get_var_freqs (v)->tab; assert (ft->mode == FRQM_GENERAL); compare = get_freq_comparator (cmd.sort, var_get_type (v)); /* Extract data from hash table. */ count = hsh_count (ft->data); data = hsh_data (ft->data); /* Copy dereferenced data into freqs. */ freqs = xnmalloc (count, sizeof *freqs); for (i = 0; i < count; i++) { struct freq *f = data[i]; freqs[i] = *f; } /* Put data into ft. */ ft->valid = freqs; ft->n_valid = partition (freqs, count, sizeof *freqs, not_missing, v); ft->missing = freqs + ft->n_valid; ft->n_missing = count - ft->n_valid; /* Sort data. */ sort (ft->valid, ft->n_valid, sizeof *ft->valid, compare, v); sort (ft->missing, ft->n_missing, sizeof *ft->missing, compare, v); /* Summary statistics. */ ft->valid_cases = 0.0; for(i = 0 ; i < ft->n_valid ; ++i ) { f = &ft->valid[i]; ft->valid_cases += f->count; } ft->total_cases = ft->valid_cases ; for(i = 0 ; i < ft->n_missing ; ++i ) { f = &ft->missing[i]; ft->total_cases += f->count; } } /* Frees the frequency table for variable V. */ static void cleanup_freq_tab (const struct variable *v) { struct freq_tab *ft = &get_var_freqs (v)->tab; assert (ft->mode == FRQM_GENERAL); free (ft->valid); hsh_destroy (ft->data); } /* Parses the VARIABLES subcommand, adding to {n_variables,v_variables}. */ static int frq_custom_variables (struct lexer *lexer, struct dataset *ds, struct cmd_frequencies *cmd UNUSED, void *aux UNUSED) { int mode; int min = 0, max = 0; size_t old_n_variables = n_variables; size_t i; lex_match (lexer, '='); if (lex_token (lexer) != T_ALL && (lex_token (lexer) != T_ID || dict_lookup_var (dataset_dict (ds), lex_tokid (lexer)) == NULL)) return 2; if (!parse_variables_const (lexer, dataset_dict (ds), &v_variables, &n_variables, PV_APPEND | PV_NO_SCRATCH)) return 0; if (!lex_match (lexer, '(')) mode = FRQM_GENERAL; else { mode = FRQM_INTEGER; if (!lex_force_int (lexer)) return 0; min = lex_integer (lexer); lex_get (lexer); if (!lex_force_match (lexer, ',')) return 0; if (!lex_force_int (lexer)) return 0; max = lex_integer (lexer); lex_get (lexer); if (!lex_force_match (lexer, ')')) return 0; if (max < min) { msg (SE, _("Upper limit of integer mode value range must be " "greater than lower limit.")); return 0; } } for (i = old_n_variables; i < n_variables; i++) { const struct variable *v = v_variables[i]; struct var_freqs *vf; if (var_get_aux (v) != NULL) { msg (SE, _("Variable %s specified multiple times on VARIABLES " "subcommand."), var_get_name (v)); return 0; } if (mode == FRQM_INTEGER && !var_is_numeric (v)) { msg (SE, _("Integer mode specified, but %s is not a numeric " "variable."), var_get_name (v)); return 0; } vf = var_attach_aux (v, xmalloc (sizeof *vf), var_dtor_free); vf->tab.mode = mode; vf->tab.valid = vf->tab.missing = NULL; if (mode == FRQM_INTEGER) { vf->tab.min = min; vf->tab.max = max; vf->tab.vector = pool_nalloc (int_pool, max - min + 1, sizeof *vf->tab.vector); } else vf->tab.vector = NULL; vf->n_groups = 0; vf->groups = NULL; vf->width = var_get_width (v); vf->print = *var_get_print_format (v); if (vf->width > MAX_SHORT_STRING && get_algorithm () == COMPATIBLE) { enum fmt_type type = var_get_print_format (v)->type; vf->width = MAX_SHORT_STRING; vf->print.w = MAX_SHORT_STRING * (type == FMT_AHEX ? 2 : 1); } } return 1; } /* Parses the GROUPED subcommand, setting the n_grouped, grouped fields of specified variables. */ static int frq_custom_grouped (struct lexer *lexer, struct dataset *ds, struct cmd_frequencies *cmd UNUSED, void *aux UNUSED) { lex_match (lexer, '='); if ((lex_token (lexer) == T_ID && dict_lookup_var (dataset_dict (ds), lex_tokid (lexer)) != NULL) || lex_token (lexer) == T_ID) for (;;) { size_t i; /* Max, current size of list; list itself. */ int nl, ml; double *dl; /* Variable list. */ size_t n; const struct variable **v; if (!parse_variables_const (lexer, dataset_dict (ds), &v, &n, PV_NO_DUPLICATE | PV_NUMERIC)) return 0; if (lex_match (lexer, '(')) { nl = ml = 0; dl = NULL; while (lex_integer (lexer)) { if (nl >= ml) { ml += 16; dl = pool_nrealloc (int_pool, dl, ml, sizeof *dl); } dl[nl++] = lex_tokval (lexer); lex_get (lexer); lex_match (lexer, ','); } /* Note that nl might still be 0 and dl might still be NULL. That's okay. */ if (!lex_match (lexer, ')')) { free (v); msg (SE, _("`)' expected after GROUPED interval list.")); return 0; } } else { nl = 0; dl = NULL; } for (i = 0; i < n; i++) if (var_get_aux (v[i]) == NULL) msg (SE, _("Variables %s specified on GROUPED but not on " "VARIABLES."), var_get_name (v[i])); else { struct var_freqs *vf = get_var_freqs (v[i]); if (vf->groups != NULL) msg (SE, _("Variables %s specified multiple times on GROUPED " "subcommand."), var_get_name (v[i])); else { vf->n_groups = nl; vf->groups = dl; } } free (v); if (!lex_match (lexer, '/')) break; if ((lex_token (lexer) != T_ID || dict_lookup_var (dataset_dict (ds), lex_tokid (lexer)) != NULL) && lex_token (lexer) != T_ALL) { lex_put_back (lexer, '/'); break; } } return 1; } /* Adds X to the list of percentiles, keeping the list in proper order. */ static void add_percentile (double x) { int i; for (i = 0; i < n_percentiles; i++) { /* Do nothing if it's already in the list */ if ( fabs(x - percentiles[i].p) < DBL_EPSILON ) return; if (x < percentiles[i].p) break; } if (i >= n_percentiles || x != percentiles[i].p) { percentiles = pool_nrealloc (int_pool, percentiles, n_percentiles + 1, sizeof *percentiles); if (i < n_percentiles) memmove (&percentiles[i + 1], &percentiles[i], (n_percentiles - i) * sizeof (struct percentile) ); percentiles[i].p = x; n_percentiles++; } } /* Comparison functions. */ /* Ascending numeric compare of values. */ static int compare_value_numeric_a (const void *a_, const void *b_, const void *aux UNUSED) { const struct freq *a = a_; const struct freq *b = b_; if (a->value[0].f > b->value[0].f) return 1; else if (a->value[0].f < b->value[0].f) return -1; else return 0; } /* Ascending string compare of values. */ static int compare_value_alpha_a (const void *a_, const void *b_, const void *v_) { const struct freq *a = a_; const struct freq *b = b_; const struct variable *v = v_; struct var_freqs *vf = get_var_freqs (v); return memcmp (a->value[0].s, b->value[0].s, vf->width); } /* Descending numeric compare of values. */ static int compare_value_numeric_d (const void *a, const void *b, const void *aux UNUSED) { return -compare_value_numeric_a (a, b, aux); } /* Descending string compare of values. */ static int compare_value_alpha_d (const void *a, const void *b, const void *v) { return -compare_value_alpha_a (a, b, v); } /* Ascending numeric compare of frequency; secondary key on ascending numeric value. */ static int compare_freq_numeric_a (const void *a_, const void *b_, const void *aux UNUSED) { const struct freq *a = a_; const struct freq *b = b_; if (a->count > b->count) return 1; else if (a->count < b->count) return -1; if (a->value[0].f > b->value[0].f) return 1; else if (a->value[0].f < b->value[0].f) return -1; else return 0; } /* Ascending numeric compare of frequency; secondary key on ascending string value. */ static int compare_freq_alpha_a (const void *a_, const void *b_, const void *v_) { const struct freq *a = a_; const struct freq *b = b_; const struct variable *v = v_; struct var_freqs *vf = get_var_freqs (v); if (a->count > b->count) return 1; else if (a->count < b->count) return -1; else return memcmp (a->value[0].s, b->value[0].s, vf->width); } /* Descending numeric compare of frequency; secondary key on ascending numeric value. */ static int compare_freq_numeric_d (const void *a_, const void *b_, const void *aux UNUSED) { const struct freq *a = a_; const struct freq *b = b_; if (a->count > b->count) return -1; else if (a->count < b->count) return 1; if (a->value[0].f > b->value[0].f) return 1; else if (a->value[0].f < b->value[0].f) return -1; else return 0; } /* Descending numeric compare of frequency; secondary key on ascending string value. */ static int compare_freq_alpha_d (const void *a_, const void *b_, const void *v_) { const struct freq *a = a_; const struct freq *b = b_; const struct variable *v = v_; struct var_freqs *vf = get_var_freqs (v); if (a->count > b->count) return -1; else if (a->count < b->count) return 1; else return memcmp (a->value[0].s, b->value[0].s, vf->width); } /* Frequency table display. */ /* Sets the widths of all the columns and heights of all the rows in table T for driver D. */ static void full_dim (struct tab_table *t, struct outp_driver *d) { int i = 0; int columns = 5; if (cmd.labels == FRQ_LABELS) { t->w[0] = MIN (tab_natural_width (t, d, 0), d->prop_em_width * 15); i = 1; columns ++; } for (;i < columns; i++) t->w[i] = MAX (tab_natural_width (t, d, i), d->prop_em_width * 8); for (i = 0; i < t->nr; i++) t->h[i] = d->font_height; } /* Displays a full frequency table for variable V. */ static void dump_full (const struct variable *v) { int n_categories; struct var_freqs *vf; struct freq_tab *ft; struct freq *f; struct tab_table *t; int r; double cum_total = 0.0; double cum_freq = 0.0; struct init { int c, r; const char *s; }; const struct init *p; static const struct init vec[] = { {4, 0, N_("Valid")}, {5, 0, N_("Cum")}, {1, 1, N_("Value")}, {2, 1, N_("Frequency")}, {3, 1, N_("Percent")}, {4, 1, N_("Percent")}, {5, 1, N_("Percent")}, {0, 0, NULL}, {1, 0, NULL}, {2, 0, NULL}, {3, 0, NULL}, {-1, -1, NULL}, }; const bool lab = (cmd.labels == FRQ_LABELS); vf = get_var_freqs (v); ft = &vf->tab; n_categories = ft->n_valid + ft->n_missing; t = tab_create (5 + lab, n_categories + 3, 0); tab_headers (t, 0, 0, 2, 0); tab_dim (t, full_dim); if (lab) tab_text (t, 0, 1, TAB_CENTER | TAT_TITLE, _("Value Label")); for (p = vec; p->s; p++) tab_text (t, lab ? p->c : p->c - 1, p->r, TAB_CENTER | TAT_TITLE, gettext (p->s)); r = 2; for (f = ft->valid; f < ft->missing; f++) { double percent, valid_percent; cum_freq += f->count; percent = f->count / ft->total_cases * 100.0; valid_percent = f->count / ft->valid_cases * 100.0; cum_total += valid_percent; if (lab) { const char *label = var_lookup_value_label (v, &f->value[0]); if (label != NULL) tab_text (t, 0, r, TAB_LEFT, label); } tab_value (t, 0 + lab, r, TAB_NONE, f->value, &vf->print); tab_float (t, 1 + lab, r, TAB_NONE, f->count, 8, 0); tab_float (t, 2 + lab, r, TAB_NONE, percent, 5, 1); tab_float (t, 3 + lab, r, TAB_NONE, valid_percent, 5, 1); tab_float (t, 4 + lab, r, TAB_NONE, cum_total, 5, 1); r++; } for (; f < &ft->valid[n_categories]; f++) { cum_freq += f->count; if (lab) { const char *label = var_lookup_value_label (v, &f->value[0]); if (label != NULL) tab_text (t, 0, r, TAB_LEFT, label); } tab_value (t, 0 + lab, r, TAB_NONE, f->value, &vf->print); tab_float (t, 1 + lab, r, TAB_NONE, f->count, 8, 0); tab_float (t, 2 + lab, r, TAB_NONE, f->count / ft->total_cases * 100.0, 5, 1); tab_text (t, 3 + lab, r, TAB_NONE, _("Missing")); r++; } tab_box (t, TAL_1, TAL_1, cmd.spaces == FRQ_SINGLE ? -1 : TAL_GAP, TAL_1, 0, 0, 4 + lab, r); tab_hline (t, TAL_2, 0, 4 + lab, 2); tab_hline (t, TAL_2, 0, 4 + lab, r); tab_joint_text (t, 0, r, 0 + lab, r, TAB_RIGHT | TAT_TITLE, _("Total")); tab_vline (t, TAL_0, 1, r, r); tab_float (t, 1 + lab, r, TAB_NONE, cum_freq, 8, 0); tab_float (t, 2 + lab, r, TAB_NONE, 100.0, 5, 1); tab_float (t, 3 + lab, r, TAB_NONE, 100.0, 5, 1); tab_title (t, "%s", var_to_string (v)); tab_submit (t); } /* Sets the widths of all the columns and heights of all the rows in table T for driver D. */ static void condensed_dim (struct tab_table *t, struct outp_driver *d) { int cum_w = MAX (outp_string_width (d, _("Cum"), OUTP_PROPORTIONAL), MAX (outp_string_width (d, _("Cum"), OUTP_PROPORTIONAL), outp_string_width (d, "000", OUTP_PROPORTIONAL))); int i; for (i = 0; i < 2; i++) t->w[i] = MAX (tab_natural_width (t, d, i), d->prop_em_width * 8); for (i = 2; i < 4; i++) t->w[i] = cum_w; for (i = 0; i < t->nr; i++) t->h[i] = d->font_height; } /* Display condensed frequency table for variable V. */ static void dump_condensed (const struct variable *v) { int n_categories; struct var_freqs *vf; struct freq_tab *ft; struct freq *f; struct tab_table *t; int r; double cum_total = 0.0; vf = get_var_freqs (v); ft = &vf->tab; n_categories = ft->n_valid + ft->n_missing; t = tab_create (4, n_categories + 2, 0); tab_headers (t, 0, 0, 2, 0); tab_text (t, 0, 1, TAB_CENTER | TAT_TITLE, _("Value")); tab_text (t, 1, 1, TAB_CENTER | TAT_TITLE, _("Freq")); tab_text (t, 2, 1, TAB_CENTER | TAT_TITLE, _("Pct")); tab_text (t, 3, 0, TAB_CENTER | TAT_TITLE, _("Cum")); tab_text (t, 3, 1, TAB_CENTER | TAT_TITLE, _("Pct")); tab_dim (t, condensed_dim); r = 2; for (f = ft->valid; f < ft->missing; f++) { double percent; percent = f->count / ft->total_cases * 100.0; cum_total += f->count / ft->valid_cases * 100.0; tab_value (t, 0, r, TAB_NONE, f->value, &vf->print); tab_float (t, 1, r, TAB_NONE, f->count, 8, 0); tab_float (t, 2, r, TAB_NONE, percent, 3, 0); tab_float (t, 3, r, TAB_NONE, cum_total, 3, 0); r++; } for (; f < &ft->valid[n_categories]; f++) { tab_value (t, 0, r, TAB_NONE, f->value, &vf->print); tab_float (t, 1, r, TAB_NONE, f->count, 8, 0); tab_float (t, 2, r, TAB_NONE, f->count / ft->total_cases * 100.0, 3, 0); r++; } tab_box (t, TAL_1, TAL_1, cmd.spaces == FRQ_SINGLE ? -1 : TAL_GAP, TAL_1, 0, 0, 3, r - 1); tab_hline (t, TAL_2, 0, 3, 2); tab_title (t, "%s", var_to_string (v)); tab_columns (t, SOM_COL_DOWN, 1); tab_submit (t); } /* Statistical display. */ /* Calculates all the pertinent statistics for variable V, putting them in array D[]. FIXME: This could be made much more optimal. */ static void calc_stats (const struct variable *v, double d[frq_n_stats]) { struct freq_tab *ft = &get_var_freqs (v)->tab; double W = ft->valid_cases; struct moments *m; struct freq *f=0; int most_often; double X_mode; double rank; int i = 0; int idx; double *median_value; /* Calculate percentiles. */ /* If the 50th percentile was not explicitly requested then we must calculate it anyway --- it's the median */ median_value = 0 ; for (i = 0; i < n_percentiles; i++) { if (percentiles[i].p == 0.5) { median_value = &percentiles[i].value; break; } } if ( 0 == median_value ) { add_percentile (0.5); implicit_50th = 1; } for (i = 0; i < n_percentiles; i++) { percentiles[i].flag = 0; percentiles[i].flag2 = 0; } rank = 0; for (idx = 0; idx < ft->n_valid; ++idx) { static double prev_value = SYSMIS; f = &ft->valid[idx]; rank += f->count ; for (i = 0; i < n_percentiles; i++) { double tp; if ( percentiles[i].flag2 ) continue ; if ( get_algorithm() != COMPATIBLE ) tp = (ft->valid_cases - 1) * percentiles[i].p; else tp = (ft->valid_cases + 1) * percentiles[i].p - 1; if ( percentiles[i].flag ) { percentiles[i].x2 = f->value[0].f; percentiles[i].x1 = prev_value; percentiles[i].flag2 = 1; continue; } if (rank > tp ) { if ( f->count > 1 && rank - (f->count - 1) > tp ) { percentiles[i].x2 = percentiles[i].x1 = f->value[0].f; percentiles[i].flag2 = 1; } else { percentiles[i].flag=1; } continue; } } prev_value = f->value[0].f; } for (i = 0; i < n_percentiles; i++) { /* Catches the case when p == 100% */ if ( ! percentiles[i].flag2 ) percentiles[i].x1 = percentiles[i].x2 = f->value[0].f; /* printf("percentile %d (p==%.2f); X1 = %g; X2 = %g\n", i,percentiles[i].p,percentiles[i].x1,percentiles[i].x2); */ } for (i = 0; i < n_percentiles; i++) { struct freq_tab *ft = &get_var_freqs (v)->tab; double s; double dummy; if ( get_algorithm() != COMPATIBLE ) { s = modf((ft->valid_cases - 1) * percentiles[i].p , &dummy); } else { s = modf((ft->valid_cases + 1) * percentiles[i].p -1, &dummy); } percentiles[i].value = percentiles[i].x1 + ( percentiles[i].x2 - percentiles[i].x1) * s ; if ( percentiles[i].p == 0.50) median_value = &percentiles[i].value; } /* Calculate the mode. */ most_often = -1; X_mode = SYSMIS; for (f = ft->valid; f < ft->missing; f++) { if (most_often < f->count) { most_often = f->count; X_mode = f->value[0].f; } else if (most_often == f->count) { /* A duplicate mode is undefined. FIXME: keep track of *all* the modes. */ X_mode = SYSMIS; } } /* Calculate moments. */ m = moments_create (MOMENT_KURTOSIS); for (f = ft->valid; f < ft->missing; f++) moments_pass_one (m, f->value[0].f, f->count); for (f = ft->valid; f < ft->missing; f++) moments_pass_two (m, f->value[0].f, f->count); moments_calculate (m, NULL, &d[frq_mean], &d[frq_variance], &d[frq_skew], &d[frq_kurt]); moments_destroy (m); /* Formulas below are taken from _SPSS Statistical Algorithms_. */ d[frq_min] = ft->valid[0].value[0].f; d[frq_max] = ft->valid[ft->n_valid - 1].value[0].f; d[frq_mode] = X_mode; d[frq_range] = d[frq_max] - d[frq_min]; d[frq_median] = *median_value; d[frq_sum] = d[frq_mean] * W; d[frq_stddev] = sqrt (d[frq_variance]); d[frq_semean] = d[frq_stddev] / sqrt (W); d[frq_seskew] = calc_seskew (W); d[frq_sekurt] = calc_sekurt (W); } /* Displays a table of all the statistics requested for variable V. */ static void dump_statistics (const struct variable *v, int show_varname) { struct freq_tab *ft; double stat_value[frq_n_stats]; struct tab_table *t; int i, r; int n_explicit_percentiles = n_percentiles; if ( implicit_50th && n_percentiles > 0 ) --n_percentiles; if (var_is_alpha (v)) return; ft = &get_var_freqs (v)->tab; if (ft->n_valid == 0) { msg (SW, _("No valid data for variable %s; statistics not displayed."), var_get_name (v)); return; } calc_stats (v, stat_value); t = tab_create (3, n_stats + n_explicit_percentiles + 2, 0); tab_dim (t, tab_natural_dimensions); tab_box (t, TAL_1, TAL_1, -1, -1 , 0 , 0 , 2, tab_nr(t) - 1) ; tab_vline (t, TAL_1 , 2, 0, tab_nr(t) - 1); tab_vline (t, TAL_GAP , 1, 0, tab_nr(t) - 1 ) ; r=2; /* N missing and N valid are always dumped */ for (i = 0; i < frq_n_stats; i++) if (stats & BIT_INDEX (i)) { tab_text (t, 0, r, TAB_LEFT | TAT_TITLE, gettext (st_name[i].s10)); tab_float (t, 2, r, TAB_NONE, stat_value[i], 11, 3); r++; } tab_text (t, 0, 0, TAB_LEFT | TAT_TITLE, _("N")); tab_text (t, 1, 0, TAB_LEFT | TAT_TITLE, _("Valid")); tab_text (t, 1, 1, TAB_LEFT | TAT_TITLE, _("Missing")); tab_float(t, 2, 0, TAB_NONE, ft->valid_cases, 11, 0); tab_float(t, 2, 1, TAB_NONE, ft->total_cases - ft->valid_cases, 11, 0); for (i = 0; i < n_explicit_percentiles; i++, r++) { if ( i == 0 ) { tab_text (t, 0, r, TAB_LEFT | TAT_TITLE, _("Percentiles")); } tab_float (t, 1, r, TAB_LEFT, percentiles[i].p * 100, 3, 0 ); tab_float (t, 2, r, TAB_NONE, percentiles[i].value, 11, 3); } tab_columns (t, SOM_COL_DOWN, 1); if (show_varname) tab_title (t, "%s", var_to_string (v)); else tab_flags (t, SOMF_NO_TITLE); tab_submit (t); } /* Create a gsl_histogram from a freq_tab */ gsl_histogram * freq_tab_to_hist(const struct freq_tab *ft, const struct variable *var) { int i; double x_min = DBL_MAX; double x_max = -DBL_MAX; gsl_histogram *hist; const double bins = 11; struct hsh_iterator hi; struct hsh_table *fh = ft->data; struct freq *frq; /* Find out the extremes of the x value */ for ( frq = hsh_first(fh, &hi); frq != 0; frq = hsh_next(fh, &hi) ) { if (var_is_value_missing(var, frq->value, MV_ANY)) continue; if ( frq->value[0].f < x_min ) x_min = frq->value[0].f ; if ( frq->value[0].f > x_max ) x_max = frq->value[0].f ; } hist = histogram_create(bins, x_min, x_max); for( i = 0 ; i < ft->n_valid ; ++i ) { frq = &ft->valid[i]; gsl_histogram_accumulate(hist, frq->value[0].f, frq->count); } return hist; } static struct slice * freq_tab_to_slice_array(const struct freq_tab *frq_tab, const struct variable *var, int *n_slices); /* Allocate an array of slices and fill them from the data in frq_tab n_slices will contain the number of slices allocated. The caller is responsible for freeing slices */ static struct slice * freq_tab_to_slice_array(const struct freq_tab *frq_tab, const struct variable *var, int *n_slices) { int i; struct slice *slices; *n_slices = frq_tab->n_valid; slices = xnmalloc (*n_slices, sizeof *slices); for (i = 0 ; i < *n_slices ; ++i ) { const struct freq *frq = &frq_tab->valid[i]; slices[i].label = var_get_value_name (var, frq->value); slices[i].magnetude = frq->count; } return slices; } static void do_piechart(const struct variable *var, const struct freq_tab *frq_tab) { struct slice *slices; int n_slices; slices = freq_tab_to_slice_array(frq_tab, var, &n_slices); piechart_plot(var_to_string(var), slices, n_slices); free(slices); } /* Local Variables: mode: c End: */